
in Proc. of SOARConference,August4-6, 1992,Houston,Texas.

N93-32098
An Iconic Programming Language for Sensor-Based Robots

Matthew Gertz, David B. Stewart, Pradeep K. Khosla

Department of Electrical and Computer Engineering

The Robotics Institute

Carnegie Mellon University, Pittsburgh, PA. 15213

Abstract-- In this paper we describe an Iconic program-
ming language called Onika for sensor-based robotic sys-
tems. Onika is both modular and reconfigurable and can be
used with any system architecture and real.time operating
system. Onika is also a multi-level programming environ-
ment wherein tasks are built by connecting a series of icons
which in turn can be defined in terms of other icons at the

lower levels. Expert users are also allowed to use control
block form to define servo tasks. The icons in Onika are

both shape and color coded like pieces of a jigsaw puzzle
thus providing a form of error control in the development
of high level applications.

Keywords- Programming, Real-time, Iconic Language,
Sensor-based robots, visual programming.

1 Introduction

Programming manipulators to perform tasks can often be a dif-
ficult and frustrating task. Many of the programming languag-
es available have a C-like syntax, which makes developing
appfications very difficult for persons not having an adequate
background in programming. Deciphering and debugging
cryptic, non-portable, and ill-commented code can waste many
man-hours of valuable time, while executing such questionable
code can be physically dangerous to beth machine and opera-
tor. Man-hours are also wasted when an operator must undergo
lengthy training to be able to operate a robotic system. While
C-language programming is appropriate for experienced pro-
grammers, it is inappropriate for users who are interested only
in effectively using a manipulator or a robotic system. What is,
therefore, needed is a programming language and a system that
simultaneously provides the ability to develop systems level
code and also allows users to program applications easily.

At Carnegie Mellon University, we are pursuing research with
the goal of creating a programming and control environment,

for sensor-based systems, that allows for rapid development of
applications through automatic generation and validation of
real-time code. In order to make sensor-based robot systems
easy to use and program, we are also developing an iconicpro-
gramming language (IPL) called Onika for use as a human-

machine interface for programming robotic systems. In this
paper, we provide an overview of the current version of Onika

and its capabilities for programming sensor-based systems.

Onika is a multi-level programming environment that is both
modular and reconfigurable. At the highest level applications
for a sensor-based manipulator I are created by choosing icons

which represent objects, jobs, and expressions, and arranging
them in a logical sequence. At lower levels, robotics-savvy us-
ers (or experienced programmers) can additionally define jobs,
new icons, etc. for inclusion into the applications. At the lower
level, it is also possible to combine icons representing tasks
into control-block form and to bind C-language code to an
icon. Once a task level iconic program is created in Onika, the

underlying system provides the capability to develop the
equivalent C-program for execution. The underlying system
consists of the reconfigurable software structure[lO] and the

Chimera real-time operating system that we have developed
[3].

In contrast to the previous work done on VPLs, described in

the next section, we are developing our IPL to be reconfig-
urable, customizable, and able to sit in any architecture, draw-

ing upon the resources of the resident real-time operating
system (such as OS-9, CHIMERA II, VxWorks, etc.). The
icons in Onika are both shape and color coded and can be

thought of as pieces of a jig-saw puzzle. This is advantageous
because a novice user cannot connect completely arbitrary
icons to develop a program, at the task level, that does not
make logical sense.

Onika also permits smaller sets of iconic programs to be com-
bined to create larger programs (represented by one icon), thus
allowing for the rapid creation of a library of tried-and-true
procedures for the manipulator. Furthermore, by loading in the
specifications of any particular manipulator, it is planned that
our IPL will be able to run its programs on different manipula-
tor systems without the user needing to rewrite the code. Trans-
lation would be done at a lower level in the system
architecture, with the help of a specsfile created for each ma-
nipulator (which would list construction data, joint limits and
lengths, moments of inertia, and so forth). Finally, develop-
ment of a lower-level simulator for the IPL is underway, so that
an application created for a manipulator can be simulated in
real-time without changing the application at all -- from a tele-

robotic standpoint, there would be no difference in the type of
information received and the amount of control exerted in a

simulation as opposed to an actual run.

1. Throughout this paper, we shall use the term manipulator to

refer to the system programmed by the IPL; nevertheless, it

should be noted that this IPL, being reconfigurable and modu-

lar, could be used for a variety of systems, such as satellite con-

trol, deep-sea remote exploration, or industrial process control.

If the use of manipulators is ever to become more widespread
than it currently is, then the ability to program these machines
must become available to the researcher or worker who may
nQt have a background knowledge in computers or robotics. By
introducing an IPL into existing manipulator systems, floor-
level workers will be able to run complex and critical routines,
while the actual coding of lower-level tasks for these machines
that the icons represent can be limited to professional program-
mers.

This paper is organized a s follows: The next Section describes
previous efforts in this area and in Section 3, we briefly dis-
cusses the history of our IPL, and how we implemented a test
version to demonstrate the effectiveness of such a scheme.
Section 4 describes our current version of IPL called Onika and
in Section 5, we discuss several research issues that we are pur-
suing. Finally, in Section 6, we summarize the paper.

2 Previous Work

An iconic programming language is distinct from what is
known as a visual programming language (VPL), in that an
IPL1relies on the user's association of actions and objects with
pictures, shapes, and colon, rather than with less-informative
flowcharts, textual information, and cryptic coding sequences.
Iconic interfaces can be very useful for training new users to
effectively operate their systems. Icons have proven to be eas-
ily identifiable and have simplified the tasks of moving through
directories, accessing files, and running executables as in Mac-
intosh and Windows environments. An IPL extends this idea

by identifying an icon with a specific action or object; by com-
bining icons in a certain way, an application can be described
and executed.

A considerable amount of effort has been expended for devel-
oping graphical interfaces and visual languages to define an
application. Visual programming has been applied to many di-
verse domains and an excellent review may be found in [11].
In this short review of previous work, our goal is to provide a
perspective and motivation for the features that we chose to in-
clude in the development of Onika.

Hanne and Hoepelman suggest a "natural language" (NL) ap-
proach, where questions and statements are made based on
simple English sentences[2]. The disadvantage of this is that
"natural language" is only natural to those who communicate
in an Indo-European language. For instance, the structure of
Chinese and Japanese languages are quite different than that of
English, and Amelsan (American Sign Language) structurally
bears little resemblance to any spoken language. We feel that
to be useful, an IPL should be conceptual, rather than English-
oriented, and we have used this approach in our work. There

1.Although IPL technically refers to the grammar, syntax, and
manipulation of the programming elements of a particular type
of human-machine interface, rather than the interface to the
machine itself, we shall use both the terms IPL and Onika
throughout this paper as reference to both the language and the
interface.

are precedents for this approach; for instance, international
traffic signs use concepts rather than written language. Be-
sides, a visual robotic programming language using the NL ap-
proach would be so complex to parse as to minimize any
advantage gained from using icons.

Leifer et. al. use icons to represent manipulation primitives [4];
these icons are then combined to construct a manipulation pro-
gram. For the non-engineering type of person, programs can be
easily created, debugged, and modified without a detailed
knowledge of programming or computers in general. However,
for the engineer who must decide whether or not to use PID
control, force control, hybrid control, and so forth, the lexicon
of the language of the interface must be expanded to include
more than one level of programming. Furthermore, condition-
als (such as if/then/else) should be added to create a robust vo-
cabulary, and a grammar must be added so that the user is kept
from creating impossible routines (e.g. Move-To Move-To Ball
Move-To Pick-Up). Furthermore, the IPL should allow the cre-
ation of parallel-task applications, and the user should be able
to completely redefine icons and their meanings without di-
minishing portability. In our research we are developing meth-
ods to implement these necessary programming concerns in a
visual manner which is easily understood by the user.

Mahling and Croft introduce a visual programming language
for the acquisition and display of plans for a planning system
[5]. They have icons for acts and icons for relations and ob-
jects, which are used for creating plans to achieve some logical
goal. What is noteworthy about their set-up is the notion of an
expandable library of icons. Clearly, this is a beneficial thing to
have. However, to minimize user confusion, only appropriate
icons should be available to the user- for example, ifa manip-
ulator doesn't have a camera, then vision-routine icons should
not available as icon choices for an application during its cre-
ation. Some method of organizing icons by category and do-
main is needed to prevent users from creating grammatically-
correct but non-functional applications. A method of categori-
zation of types and purposes of icons into some grammatical
dichotomy is a major goal of our research.

Flow chart methods are often suggested, as Angelaccio et. al.
have done for E-R oriented databases [1]. While flow charts
lend themselves well to mapping the flow of a routine, they can
look intimidating and are not as friendly to the user in terms of
presentation of information as pictures would be. This is a
much more important consideration than many people might
think; user-friendliness improves productivity. Furthermore,
arrows from one flow element to the next unnecessarily waste
screen space. In the iconic approach we propose the creation of
applications from job icons, the icons sit adjacent to each other;
since icons do not require text to describe them, they can be
much smaller than flow chart elements and yet convey the
same amount of information and sense of program direction.
This minimizes wasted space, and allows more routine ele-
ments to be seen at a time, which aids application develop-
ment.

Flow chart methods are not at all useful when describing how
a job is defined by servo tasks running simultaneously, and so

when defining jobs from task we use a control-block form. Ad-

ditionally, the pictures in the icons are more easily identifiable
than the generic boxes of a flowchart with respect to specific
routines. A flowchart element must represent a "complete"
event (action + objects), since all flowchart elements of a type
should theoretically be interchangeable. An IPL, on the other
hand, could have an object easily replaced in an event without
effecting its dependent action (and all of the values possibly as-
sociated with it), and vice-versa.

Mussio et. al. use icons which vary in shape, and are thus as-
sembled in sort of a jigsaw puzzle ensuring correct grammar
[7]; certain icons can only interlock with other icons (both left-

right and up-down). Their icons resembled liver cells; a hepa-
tologist was guided to create valid models of the liver and test
them by using it. Glinert [12] describes a system called Proc-
BLOX that uses jigsaw puzzle pieces to present program con-
structs. Onika uses icons, as mentioned before, that are both

shape and color coded puzzle pieces. In this context, a fore-
most concern in our research is exploring the best way for
icons to be identified by class and grammar, whether by shape,
color, size, or some other visual difference.

In the next section, we describe an initial version of our IPL
called Bookworm.

3 A History of Our IPL

Our first prototype IPL called Bookworm was developed to

demonstrate the effectiveness of iconic programming, and to
discover some of lhe issues which would demand investigation
in the research and development of a more powerful IPL. The
Bookworm IPL was used to combine jobs and objects into ap-
plications, where the jobs were defined using code (in the new-
er IPL, Onika, the jobs used in the creation of applications ate
themselves iconically defined rather than textually defined).

Bookworm used a specific grammar to decide which icons may
follow other icons in a story. For instance, an action icon which
required an object (e.g. Move-To <object>) could not be fol-
lowed by another action icon; it had to be followed by an ob-

ject. Similarly, objects had to be preceded by an appropriate
action-requiring-object icon. The grammar was immediately
understandable to the user, since we used colors to identify
icons: an icon whose right half is blue must be followed by an
icon whose left half is blue, and so forth. There were three dif-

ferent types of icon "words" (green-green, green-blue, and
blue-green, representing action, action requiring object, and
object, respectively; we are currently performing research to
discover exactly how many different classes of words are re-
quired for our latest IPL, Onika). The grammar of an icon was
defined when the icon was created or modified, so that color

did not need to be the identifying key; it could instead have
been the shapes of the edges of the icons, for instance (useful
if the user is color-blind).

Bookworm also conformed to the conventions of the platform
on which it exists. For instance, the Macintosh version could
be run from pull-down menus and command keys as well as

icons; the Sun version of our present IPL, Onika, similarly uses
SunView and XView conventions. In this way, users familiar

with a particular platform are more easily be able to anticipate
how the IPL reacts to commands and keystrokes.

Although Bookworm did not run a program on an actual ma-
nipulator, it did generate simulation files for use with ROB-
SIM, a NASA/Langley robotic simulator. When the "Simulate
Story" icon was selected, AL code was generated through a
four-pass method. First, Bookworm looked for holes in the sto-

ry, and aborted the simulation ff it found any. Next, Bookworm
checked value panels for object locations, and defined vari-
ables for those locations, which it inserted into the AL file. On

the next pass, those variables were initialized, and, finally, the
meat of the code was produced.

Bookworm was strictly a higher-level IPL. At an early stage,
we recognized that lower-level routines could also be coded
using icons, although an entirely different grammar would be
required, since lower-level routines are very specific and rep-
resent quite abstract concepts. Onika, the current IPL under de-
velopment, is much more stratified than Bookworm and can be
used to create lower-level jobs as well as higher-level applica-
tions, making itself more useful to progranuners while still
keeping lower-level details transparent to less technically-ori-
ented users.

Onika's higher-level interface under development resembles

Bookworm strongly but allows for a much expanded grammar
(including conditionals, loops, and error-trap routines). By us-
ing icons and visual grammar cues to identify procedures, we

avoid many of the problems of the flowchart approach to visual
programming, including usage of screen space (much of which
is wasted in flowchart methods), dependence on English, and
problems in recognition of routines (one flow chart box looks
pretty much like any other). Our icon "stories" are concise,
compact, and easily read.

Onika's lower-level interface, designed to be used by experi-
enced persons, resembles nothing so much as an I(2 CAD inter-

face. Icons representing tasks, and having certain input and
output pins, are combined into control block diagrams (con-

nections are done automatically by the system, relieving the
user of that tedious burden). Instead of having to change fines
in pages of cryptic real-time code, the user can manipulate
tasks graphically, retrieving and changing task information
simply by clicking on the task's icon with a mouse. Activation
and deactivation of one or all tasks is done with one keystroke,
and task configurations can be modified as simply as selecting
a task, deleting it, and dragging over another task to take its
place.

Clearly, both the lower- and higher-level interfaces of Onika
must rely on an underlying software support structure. Onika
can be tailored for use on any system architecture, using any
real-time system. The following section discusses Onika and
its relationship to our own system architecture.

40nika's Position in the System Architecture

Figure 1 shows the system software architecture for reconfig-
urable sensor-based control systems[9] [10] that we have devel-
oped. In this architecture, we have defined several types of

3

routines.The most general manipulator routine is the applica-

tion, which specifies some goal to be achieved. For example,
"Wash the dishes" is a fairly typical application in day-to-day

life. An application is defined by some serial flow (or flows) of
jobs, which define some singular action affecting an object.
"Lift the plate," "Put scrubber on plate," and "Scrub" are good
examples of jobs executed serially to achieve the application
goal of washing the dishes. Finally, a job can be loosely de-
scribed as being defined by a collection of tasks, all of which
are running concurrently to fulfill the conditions of a job, and
all of which have certain input and output functions. "Perform
inverse dynamics," "Resolve acceleration of scrubbing unit,"
and "Invert scrubbing-arm jacobian'" axe all examples of tasks
running concurrently to finish the job "Scrub." Tasks them-
selves axe defined by various subroutine calls and are textually
coded in C language.

Onika Can be used to create both jobs from tasks and applica-

tions from jobs. Users can open a task lexicon (Figure 2), and
drag icons representing tasks from the lexicon to a job canvas
(these icons axe simple CAD representations, and are created
on the fly). Once on the canvas, a task is created on the under-
lying real-time system, and the icon representing that task au-

tomatically connects itself to other task icons based on the
input/output variables of all the tasks in question (Figure 3).
This allows the user to easily see whether or not a complete job
has been created. The user can modify certain values associat-
ed with each task, such as the frequency, the priority, and
whether or not the task is active or inactive. Task icons can be

cut and repasted, although only one instance of each task can
exist on the canvas. To create a job from tasks, the user need
not know anything about the underlying real-time system, nor
know much about computers, but he or she must have some
knowledge about robotics.

However, once a job has been completely defined (shown in

Figure 4), the entire job can be saved and linked to an pictorial
icon (Figure 5). This pictorial icon can be saved for general use
to a job dictionary, and dragged to an application workspace to
become part of an application (Figure 6), which can also be
saved and reloaded. When the application is run, and the job is
encountered in a program flow, the tasks associated with that
job are automatically loaded and activated based on the manip-
ulator description chosen by the user. When the job is com-
plete, its tasks are destroyed, and the program flow moves to
the next job in the application. Jobs can cut, copied and pasted
to the application as well, and of course multiple instances of
jobs in the application are allowed. All of this is transparent to
the high-level user. In order to create applications from jobs,
the user need not know anything about the underlying support
system, computers, or even anything about robotics. He or she
simply needs to know how to drag job icons from one location
of the screen to the other in some meaningful serial order
("Move here, then do this, then move there, then do that..."),
the background grammar-checker ensuring that syntactically
impossible applications cannot be generated.

Although not yet implemented, it is planned that applications

will be used to define other applications (for instance, the ap-
plication "Wash the dishes" could be a sub-application of the

application "Do the housework"), and that applications could
follow several flow branches (or even parallel flow branches)
based on conditions at some point in the application.

It is expected that non-technically-oriented users would prima-
rily create applications from jobs, and that the more robot/com-

puter-oriented user would create the jobs from tasks.
Experiments with the prototype IPL Bookworm have shown
that most users can learn create usable applications from jobs
in less than a half-hour.

While the implementation of an interface for technically-ori-
ented users to define jobs from tasks is fairly straightforward,
the implementation of powerful yet user-friendly interface for
people having little or no background in robotics or computers
to create applications from jobs is not. The next section dis-

cusses some of the research issues that we will be exploring
while developing the IPL and supporting architecture.

5 Research and Development Issues

In order to develop the iconic human-machine interface for
creating applications from jobs, several important research and
development issues will need to be explored. These include
(but are not limited to) the development of a grammar and the
presentation of information to the user.

First, a grammar for the interface must be developed. This task,
in turn, raises three other issues: first, how to represent a con-
cept graphically and identifiably within a limited amount of
screen space (the icon); second, how to classify the job icons

as to grammatical types and identifying the number of types
that will be needed, such as "self-contained action," "action re-
quiring object, object," "conditional," "modifier," etc. (the
dichotomy); and third, how present visual grammatical clues to
the user, so that the he or she does not waste time by attempting
to create non-grammatical applications (the syntax).

In addition to the development of a grammar, the organization
of information on the screen, and the devices by which it is af-
fected, are also of paramount importance, and research will be
performed to maximize their effectiveness. Interface controls
to create, simulate, and run manipulator applications must be
easily interpretable and used. The presentation of the applica-
tion under development must allow the user to clearly see and
understand the routine he or she is creating. Background error
checking should immediately indicate when an impossible ap-
plication is being built and prevent its occurrence, so that later
debugging is kept to a minimum. The interface itself should
conform to the established customs of the platform on which it
exists (for instance, on the Macintosh, one would expect pull-
down menus and command keys to perform operations similar

to those that the user would expect they would in other Macin-
tosh programs). Finally, all lower-level details must be trans-
parent to the user; the interface should be developed with non-

technically-oriented users in mind. These steps are necessary
to create an interface which can be used at all times, and under

any conditions, by users at any level of technical expertise.

We are especially interested in determining if an iconic pro-
gramming interface will reduce the training time, experience,

4

and education necessary to operate machinery which at lower
levels is quite co_nplex. Informal tests have shown that users
who have some familiarity with computers and window inter-
faces can learn to IXOficientlyuse the prototype IPL Book-
worm in less thana haLf-hour.We plan on doing extensive tests
on an exp_vded v_sion to see how users who are inexperi-
enced with using computers and/or robotics adapt to Onika.

6 Sunmary

We have described aniconic lxogramming interface for creat-
ing applications for sensoc-based systems such as manipula.
tots. This IPL, called Oni]_ will allow a user to control both
higher-level and lower-level routines. Lower-level details are
kept wansparent to n0n-technically-oriented users. With only a
couple of hours of training, we expect that users will be able to
construct complex applications for manipulators, despite any
lack of previous experience with programming and/or robotics.
To make the IPL as effective as possible, research is being per-
formed to determine the prope_ grammar and visual presenta-
tion for the IPL.

Acknowledgments

Partial support for this research was provided by NASA, San.
alia National La_ratories, the Department of Electrical and
Computer ,Engineering, and The Robotics Institute, Carnegie
Mellon Unive_ity.

The authors would like to thank Philip Morris, Mike Goode,
Jack Pennington, and all of the other researchers at NASA/
Langley's LTM facility for the use of machines and time to
complete the Bookworm prototyI_ IPL. Additional thanks go
to Dr. Rich Volpe at JPLfor his help in defining the task/job re-
lationship.

More information on Onika, Chimera real-time operating
system, and recontigurable software can be obtained by con-
tacting Professor Pradeep K. Khosla at Deparlmeat of Eleclri-
cal and Computer, The Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA 15213.

References:

[1] Angelaccio, M., Catarci, 1,., and Santucci, G. "QBD*: A
Fully Visual System for E-R Oriented Databases," 1989
IEEE Workshop on Visual Languages, Oct. 4-6, 1989, pp.
56-61, Rome, Italy.

[2] Hanne, K. H. and Hoepelman, J. Ph. "Combined Graphic-
and Natural Language-Interaction (Design and Implemen-
tation)," Proceedings of Graphics Interface '88, June 6-8,
1988, pp. 105-111, Edmonton, Alberta.

[3] D.B. Stewart, D.E. Schmitz, and P.K.Khosla, "Implement-
ing real-time robotic systems using Chimera I1," in Proc.
of lEEE Intl. Conf. on Robotics and Automation, Cincin-
nati, OH, pp. 598-603, May 1990.Chimera

[4] Leifer, L., Van der Loos, M., and Lees, D. "Visual Lan-
guage Programming: for robot command-control in un-
structured environments," Proceedings of the Fifth

International Conference on Advanced Robotics: Robots
in Unstructured Environments, June 19-22, 1991, pp. 31-
36, Pisa, Italy.

[5] Mahling, D. E. and Croft, W. B. "A Visual Language for
the Acquisition and Display of Plans," 1989 IEEE Work-
shop on Visual Languages, Oct. 4-6, 1989, pp. 50-54,
Rome, Italy.

[6] Miyao, J., Wakabayashi, S., Yoshida, N., and Ohtahara, Y.
'Wisualized and Modeless Programming Environment for
Form Manipulation Language," 1989 IEEE Workshop on
Visual Languages, Oct. 4-6, 1989, pp. 99-104, Rome, Italy.

[7] Musslo, P., Pietrogrande, M., protfi, M., Colombo, E, Fi-
nadri, M., and Gentini, P. "Visual Programming in a Visual
Environment for Liver Simulation Studies," 1990 IEEE
Workshop on Visual Languages, Oct. 4-6, 1990, pp. 29-35,
Skokie, Illinois.

[8] Prusinkiewicz, R and Knelsen, C. "V'mual Control
Panels," Proceedings of Graphics Interface '88, June 6-8,
1988; pp. 185-191, Edmonton, Alberta.

[9] Stewart, D. B. "Real-Time Software Design'and Analysis
of Reconfigurable Advanced Sensor-Based Systems,"
Ph.D. prospectus, The Robotics Institute, Carnegie Mellon
University, March 31, 1992.

[10] Stewart, D. B., Volpe, R. A., and Khosla, E K. "Integration
of software modules for reconfignrable sensor-based con-
trol systems," in Proc. 1992 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS '92),
Raleigh, North Carolina, July 1992.

[11] Myers, B. A., Taxonomies of Visual Progranuning and
Program Visualization, Journal of Visual Languages and
Computing, 1990, pp 97-123.

[12] Glinert, E. P., Out of Flatland: Towards 3-D Visual pro-
gramming, Proceedings of 1987 Fall Joint Computer Con-
ference, October, 1987, Dallas, TX. pp 292-299.

5

graphical
user interface

Onika

iconic

programming

language

iob P

Non-Real-Time

Real-Time

job Q

Configuration R

job R

job T

A

configuration

programmer
and editor

to/from other
subsystem

typed data in

subsystem
interface Y

aperiodic
server m

global
variable table

SerVO

module i

data out

servo

modulej

servo

module k

servo

module n

typed data in

C, math,
and utility
subroutine
libraries

special purpose
processor F

sensor actuator
interface A interface B

raw data in I raw data out

i/o device

from sensor,4 to actuator B

sensor

interface C

_tain

from sensor C

(_ iconic programs (jobs)

graphical interfaces

_ real-time tasks

subroutine calls

Figure 1: Software Architecture for Reconfigurable Systems

_" 3 Xm gntf 6el

Le(

Figure 2: Loading the Task Lexicon into Onika (Sun version or Onika)

_ tee .e

Figure 3: Pulling task icons onto the job canvas (Sun version of Onika)

mum

[] Make U uelues panel

_) Action (self-contained)

0 Action (requiring object)

@ obJect

Run-time routine:

i 6dof-j°ystick-moue i

I I I III IIIl/

Figure 5: Creating an Icon for the Job (Mac II version of Bookworm)

7

ni:InimliEUk-_ I

III_ I I

,.d_] r _ ; r---I , •
I--I , I"'"I ? L ' m

"-""-,'..........,',..... lil
I' ' N L , I::I

I + I

u r- I
III ,I I I I

, , _ " -, I'::_'I

I I I I' 4:'" b, _ _ ,_.__ r_..._ I_I
...... rob_

I -- -- -- 6 _'_ -- -- I- - IntfIL__I , _ ,- -1"'" k-- _1m, L l_i!:!
, _ ' "-I"'.' I I'".' I--' l]:ii_il
I I _ I,_] I [:::::":I

_:i" _-................. "

Figure 4: The completed job (Sun version of Onika). Note that two tasks

are on and generating output as denoted by solid lines

File Edit Commands _) _ e

3___ Bookworm • _=°°=_

lllI+Imll+

I

Figure 6: Using the Job's Icon in anApplication
(Mac II version of Bookworm)

